442. Acidity Functions in Strongly Basic Media. Part II. ${ }^{1}$ The Reactions of Four Aromatic Nitro-compounds in Methanolic Sodium Methoxide

By C. H. Rochester

2,4-Dinitroaniline and 2,4-dinitroanisole interact with methoxide ions to form the amine anion RNH^{-}and a $1: 1$ addition complex, respectively. The species thus formed in each case react further probably by addition of another methoxide ion. The ionisation of the amine to RNH^{-}parallels the H_{-} function for $\mathrm{NaOMe}-\mathrm{MeOH}$ solutions but the reversible equilibria involving methoxide addition are consistent with the definition of a J_{-}acidity function.

The picrate anion and also the Meisenheimer addition complex derived from 2,4,6-trinitroanisole each undergo two further consecutive equilibria in $\mathrm{NaOMe}-\mathrm{MeOH}$ solutions. The first equilibrium in each parallels the J_{-} acidity function and the second equilibrium parallels H_{-}.
Recent measurements have shown that solution of aromatic nitro-compounds in concentrated aqueous sodium hydroxide or methanolic sodium methoxide solutions results in interactions which often involve a series of concurrent and consecutive equilibria followed
${ }^{1}$ Part I, C. H. Rochester, J., 1965, 676.
by a slow irreversible reaction. ${ }^{2,3}$ Spectrophotometric studies of the equilibria have suggested that the extent of interaction between aromatic substrate and base to form a given complex is probably dependent on an appropriate acidity function for the basic solution. ${ }^{2,3}$ Indicator ratios for eight such equilibria in methanolic sodium methoxide solutions have been measured by us, the results being consistent with the definition of a J_{-}acidity function. ${ }^{3 a, 4}$

Experimental

Picric acid (m. p. 122°), 2,4-dinitroaniline (m. p. 177°), and 2,4-dinitroanisole (m. p. 89°) were recrystallised from aqueous ethanol and dried in a vacuum desiccator. 2,4,6-Trinitroanisole (m. p. 68°) was prepared from picryl chloride and sodium methoxide in methanol, the resulting deep red solution being poured on to ice. Stock solutions containing known concentrations of the nitro-compounds in methanol were prepared. The purification of methanol and preparation of sodium methoxide solutions was as before. ${ }^{1}$

Reaction solutions were prepared by weight from stock indicator and sodium methoxide solutions, and kept in the dark because of their known light sensitivity. Complete spectra were recorded with a Unicam S.P. 800 spectrophotometer and optical densities at individual wavelengths were measured using a Unicam S.P. 500 spectrophotometer with a thermostat-controlled $\left(25^{\circ} \mathrm{C}\right)$ cell compartment. Matched 1 cm . silica stoppered cells were used. Where reaction solutions were unstable readings were taken for sufficient time to allow accurate extrapolation of the required zero time values.

Results

2,4-Dinitroanisole.-In methanol 2,4-dinitroanisole has a spectral maximum at $292 \mathrm{~m} \mu$ $(\varepsilon=10,900)$. With increasing sodium methoxide concentration in the range $0<[\mathrm{NaOMe}]<$ $2 \cdot 8 \mathrm{~m}$ the intensity of this maximum decreases and new bands at 500 and $\sim 345 \mathrm{~m} \mu$ appear, a series of spectra showing an isosbestic point $(\varepsilon=6700)$ at $316 \mathrm{~m} \mu$ (Figure 1). In the further concentration range $2.8 \mathrm{~m}<[\mathrm{NaOMe}]<\mathbf{3 . 6 \mathrm { m }}$ the isosbestic point is absent. Above $\mathbf{3 . 6 \mathrm { m }}$ a series of spectra show a new isosbestic point $(\varepsilon=9150)$ at $329 \mathrm{~m} \mu$ and the intensity of the $500 \mathrm{~m} \mu$ maximum decreases with increasing NaOMe concentration until in [NaOMe] $=4 \cdot 8 \mathrm{~m}$ the dinitroanisole is nearly completely converted into a species with an absorption maximum ($\varepsilon=19,900$) at $302 \mathrm{~m} \mu$ (Figure 1).

The spectra indicate that interaction between sodium methoxide and 2,4-dinitroanisole $\left(D_{1}\right)$ results in two consecutive equilibria to, at low concentrations of base, a species A_{1} ($\lambda_{\max }=$ $500 \mathrm{~m} \mu$) and, at higher concentrations of base, a species $B_{1}\left(\lambda_{\text {max }}=302 \mathrm{~m} \mu\right)$. The concentrations of the three species D_{1}, A_{1}, and B_{1} in a given reaction solution were calculated from optical-density values D_{0} at 316 and $500 \mathrm{~m} \mu$ (Table 1) as follows.

At $316 \mathrm{~m} \mu$, since $\varepsilon_{D_{1}}=\varepsilon_{A_{1}}$ it follows that

$$
\begin{equation*}
D_{0}=\varepsilon_{\mathrm{D}_{1}}\left[\left[\mathrm{~A}_{1}\right]+\left[\mathrm{D}_{1}\right]\right)+\varepsilon_{\mathrm{B}_{1}}\left[\mathrm{~B}_{1}\right], \tag{1}
\end{equation*}
$$

which combined with the material balance

$$
\begin{equation*}
\left[\mathrm{A}_{1}\right]+\left[\mathrm{B}_{1}\right]+\left[\mathrm{D}_{1}\right]=\left[\mathrm{D}_{1}\right]_{\mathrm{stoich}} \tag{2}
\end{equation*}
$$

permits the calculation of $\left[\mathrm{B}_{1}\right]$ from

$$
\begin{equation*}
\left[\mathrm{B}_{1}\right]=\left(D_{0}-\varepsilon_{\mathrm{D}_{1}}\left[\mathrm{D}_{1}\right]_{\text {stoich }}\right) /\left(\varepsilon_{\mathrm{B}_{1}}-\varepsilon_{\mathrm{D}_{1}}\right) \tag{3}
\end{equation*}
$$

A small extrapolation of the measured D_{0} values was necessary to establish $\varepsilon_{D_{1}}=18,080$. Above $[\mathrm{NaOMe}]=\mathbf{3 . 6 m}$ presence of the isosbestic point at $329 \mathrm{~m} \mu$ in reaction spectra indicates that $\left[D_{1}\right]=0$, and therefore $\left[A_{1}\right]$ was calculable from equation (2). As D_{1} and B_{1} both show negligible absorption at $500 \mathrm{~m} \mu, D_{0}(500 \mathrm{~m} \mu)=\varepsilon_{\mathrm{A}_{1}}\left[\mathrm{~A}_{1}\right]$. A plot of $D_{0}\left(500 \mathrm{~m} \mathrm{\mu} \mu\right.$) against $\left[\mathrm{A}_{1}\right]$ calculated as above was linear with slope $\varepsilon_{A_{1}}(500)=21,500$. Concentrations of A_{1} in reaction solutions were finally calculated by using $\left[\mathrm{A}_{1}\right]=D_{0}(500 \mathrm{~m} \mu) / 21,500$ this giving more reliable values, particularly at the higher base concentrations studied, than is obtained by using equations
${ }^{2}$ V. Gold and C. H. Rochester, $J ., 1964$, (a) 1687; (b) 1692, 1697, 1704, 1710, 1717, 1722, 1727.
${ }^{3}$ C. H. Rochester, Trans. Faraday Soc., 1962, 59, (a) 2820; (b) 2829.
4 V. Gold and B. W. V. Hawes, J., 1951, 2102.
(2) and (3). For $[\mathrm{NaOMe}]<3 \cdot 6 \mathrm{M},\left[\mathrm{B}_{1}\right]$ was calculated from equation (3) and $\left[\mathrm{D}_{1}\right]$ from equation (2). Above $[\mathrm{NaOMe}]=3.6 \mathrm{M},\left[\mathrm{B}_{1}\right]$ was calculated from $\left[\mathrm{B}_{1}\right]=\left(\left[\mathrm{D}_{1}\right]_{\text {stoich }}-\left[\mathrm{A}_{1}\right]\right)$. A summary of the concentrations of each species is given in Table 1.

Table 1
Summary of data for 2,4-dinitroanisole

$\text { [} \mathrm{NaOMe} \text {] }$ (м)	$\begin{gathered} D_{0} \\ (500 \mathrm{~m} \mu) \end{gathered}$	$\begin{gathered} D_{0} \\ (316 \mathrm{~m} \mu) \end{gathered}$	$\begin{gathered} 10^{5}\left[\mathrm{D}_{1}\right] \\ (\mathrm{M}) \end{gathered}$	$\begin{gathered} 10_{(\mathrm{M})}^{5}\left[\mathrm{~A}_{1}\right] \end{gathered}$	$\underset{(\mathrm{M})}{10^{5}\left[\mathrm{~B}_{\mathrm{I}}\right]}$	$\underset{\theta_{1}}{\text { Acidity functions }}{ }_{\theta_{2}}^{*}$	
$1 \cdot 50$	0.010	0.315	$4 \cdot 65$	0.04		18.23	
$2 \cdot 09$	0.091		$4 \cdot 28$	$0 \cdot 42{ }^{6}$		$19 \cdot 23$	
$2 \cdot 45$	$0 \cdot 228$	0.315	$3 \cdot 64$	1.06		$19 \cdot 70$	
$2 \cdot 82$	$0 \cdot 453$		$2 \cdot 59$	$2 \cdot 11$		$20 \cdot 15$	
$2 \cdot 90$	0.519	0.326	$2 \cdot 18$	$2 \cdot 42$	0.097	20.29	$20 \cdot 26$
$3 \cdot 08$	0.638	$0 \cdot 344$	1.48	$2 \cdot 97$	$0 \cdot 25$	20.54	20.59
$3 \cdot 32$	0.700	0.393	0.75	$3 \cdot 26$	$0 \cdot 69$	20.88	20.99
$3 \cdot 51$	0.682	$0 \cdot 443$	$0 \cdot 40$	3-18	$1 \cdot 12$	21-14	21.21
$3 \cdot 68$	0.595	0.535		$2 \cdot 76$	1.94		21.51
$3 \cdot 74$	0.527	0.569		$2 \cdot 45$	$2 \cdot 25$		21.62
$3 \cdot 86$	$0 \cdot 424$	0.622		1.97	$2 \cdot 73$		21.80
$4 \cdot 03$	$0 \cdot 303$	$0 \cdot 690$		1.41	$3 \cdot 29$		22.03
$4 \cdot 25$	$0 \cdot 180$	0.738		0.84	$3 \cdot 86$		22.32
$4 \cdot 58$	0.094	0.809		$0 \cdot 44$	$4 \cdot 26$		22.65
$4 \cdot 70$	0.067	0.821		0.31	$4 \cdot 39$		22.81
$4 \cdot 80$	0.057	0.818		$0 \cdot 27$	$4 \cdot 43$		22.87
* $\theta_{1}=20 \cdot 24+\log _{10}\left(\left[\mathrm{~A}_{1}\right] /\left[\mathrm{D}_{1}\right]\right) ; \theta_{2}=21 \cdot 66+\log _{10}\left(\left[\mathrm{~B}_{1}\right] /\left[\mathrm{A}_{1}\right]\right)$.							

2,4-Dinitroaniline.-In methanol 2,4-dinitroaniline has absorption maxima at $336(\varepsilon=$ 14,600) and $258 \mathrm{~m} \mu(\varepsilon=9400)$. Addition of sodium methoxide results in new maxima at 515 and $383 \mathrm{~m} \mu$, a series of spectra for $[\mathrm{NaOMe}]<2 \mathrm{~m}$ showing an isosbestic point $(\varepsilon=3570)$ at $299 \mathrm{~m} \mu$ (Figure 2). In the further range $2 \mathrm{~m}<[\mathrm{NaOMe}]<3 \cdot 6 \mathrm{~m}$ the isosbestic point is absent

Figure 1. Absorption spectra of 2,4-dinitroanisole ($4.70 \times 10^{-5} \mathrm{M}$) in methanolic sodium methoxide
[NaOMe]: 1, 0; 2, 3•22m; 3, 4•70m

Figure 2. Absorption spectra of 2,4-dinitroaniline ($7.62 \times 10^{-5} \mathrm{~m}$) in methanolic sodium methoxide
[NaOMe]: 1, 0; 2, 3.04m; 3, 4•84m
and above 3 m the bands at 383 and $515 \mathrm{~m} \mu$ begin to decrease in intensity. Above $3 \cdot 6 \mathrm{~m}$ a new isosbestic point ($\varepsilon=13,100$) appears at 365 and the 383 and $515 \mathrm{~m} \mu$ bands continue to decrease until above 4.8 m the 2,4 -dinitroaniline is completely converted into a species with a broad absorption maximum ($\varepsilon=21,700$) at $326 \mathrm{~m} \mu$ (Figure 2).

The situation here is therefore very similar to that for 2,4-dinitroanisole. Optical densities at 299 and $510 \mathrm{~m} \mu$ were measured (Table 2) and hence concentrations of unchanged 2,4-dinitroaniline D_{2} and the species $A_{2}\left(\lambda_{\max }=515,383 \mathrm{~m} \mu\right)$ and $\mathrm{B}_{2}\left(\lambda_{\max }=326 \mathrm{~m} \mu\right)$ were calculated by an identical procedure to the above. These are summarised in Table 2.

Table 2
Summary of data for 2,4-dinitroaniline

$\left[\mathrm{D}_{2}\right]_{\text {stolch }}=7.62 \times 10^{-5} \mathrm{M}$							
$\underset{(\mathrm{M})}{[\mathrm{NaOMe}]}$	$\begin{gathered} D_{0} \\ (510 \mathrm{~m} \mu) \end{gathered}$	$\begin{gathered} D_{0} \\ (299 \mathrm{~m} \mu) \end{gathered}$	$\begin{gathered} 10^{5}\left[\mathrm{D}_{2}\right] \\ (\mathrm{M}) \end{gathered}$	$\begin{gathered} 10^{5}\left[\mathrm{~A}_{2}\right] \\ (\mathrm{M}) \end{gathered}$	$\underset{(\mathrm{M})}{10^{5}\left[\mathrm{~B}_{2}\right]}$	$\begin{gathered} \text { Acidity } \\ \theta_{3} \end{gathered}$	$\begin{gathered} \mathrm{ctions}_{4} \\ \theta_{4} \end{gathered}$
$0 \cdot 52$	0.029		$7 \cdot 36$	$0 \cdot 26$		16.70	
0.56	0.042	0.273	$7 \cdot 25$	0.37		16.86	
0.75	0.053		$7 \cdot 15$	$0 \cdot 47$		16.97	
1.04	$0 \cdot 110$	$0 \cdot 272$	$6 \cdot 65$	0.97		$17 \cdot 31$	
$1 \cdot 16$	0.113		$6 \cdot 62$	1.00		17.33	
1.50	$0 \cdot 206$	$0 \cdot 272$	$5 \cdot 80$	1.82		17.65	
1.53	$0 \cdot 242$		$5 \cdot 48$	$2 \cdot 14$		17.74	
1.82	$0 \cdot 336$		$4 \cdot 65$	2.97		17.96	
1.97	0.383		$4 \cdot 23$	$3 \cdot 39$		18.05	
2.01	0.434	$0 \cdot 284$	$3 \cdot 67$	$3 \cdot 84$	$0 \cdot 11$	$18 \cdot 17$	19.52
$2 \cdot 44$	0.625	$0 \cdot 305$	1.80	$5 \cdot 53$	$0 \cdot 29$	$18 \cdot 64$	19.78
2.51	0.617	$0 \cdot 306$	1.86	$5 \cdot 46$	$0 \cdot 30$	18.62	$19 \cdot 80$
$2 \cdot 72$	$0 \cdot 680$	0.336	1.05	6.01	0.56	19.91	$20 \cdot 03$
3.04	$0 \cdot 673$	$0 \cdot 396$	$0 \cdot 59$	5.95	1.09	$19 \cdot 15$	$20 \cdot 32$
$3 \cdot 22$	0.599	$0 \cdot 499$	$0 \cdot 32$	$5 \cdot 30$	$2 \cdot 00$	$19 \cdot 37$	$20 \cdot 64$
$3 \cdot 36$	0.503	$0 \cdot 650$		$4 \cdot 45$	$3 \cdot 17$		20.91
$3 \cdot 38$	$0 \cdot 473$	$0 \cdot 671$		$4 \cdot 18$	$3 \cdot 44$		20.98
$3 \cdot 48$	$0 \cdot 430$			$3 \cdot 81$	$3 \cdot 81$		21.06
$3 \cdot 53$	$0 \cdot 393$			$3 \cdot 48$	$4 \cdot 14$		21.14
3.53	$0 \cdot 361$	0.768		$3 \cdot 20$	$4 \cdot 42$		21.20
$3 \cdot 61$	$0 \cdot 300$	0.834		$2 \cdot 65$	4.97		21.33
$3 \cdot 71$	0.207	0.920		1.83	$5 \cdot 79$		21.56
$4 \cdot 00$	0.119	0.990		1.05	6.57		21.86
$4 \cdot 22$	0.057	1.060		0.50	$7 \cdot 12$		22.22
$4 \cdot 69$	0.013	1.127		$0.11{ }_{5}$	7.50		22.87
$4 \cdot 77$	0.011	1-121		0.097	7.52		22.95

Table 3
Summary of data for picric acid

$\underset{(\mathrm{M})}{[\mathrm{NaOMe}]}$	$\begin{gathered} D_{0} \\ (480 \mathrm{~m} \mu) \end{gathered}$	$\begin{gathered} D_{0} \\ (394 \mathrm{~m} \mu) \end{gathered}$	$\begin{gathered} 10^{5}\left[\mathrm{~A}_{3}\right] \\ (\mathrm{M}) \end{gathered}$	$\begin{gathered} 10_{(\mathrm{M})}^{\bar{j}}\left[\mathrm{~B}_{3}\right] \end{gathered}$	$\begin{gathered} 10^{5}\left[\mathrm{C}_{3}\right] \\ (\mathrm{M}) \end{gathered}$	$\underset{\theta_{5}}{\text { Acidity }}$	$\begin{gathered} \text { tions } \\ \theta_{6} \end{gathered}$
0.94	0.015	0.764	$7 \cdot 48$	0.03_{2}		17.85	
1.41	0.036	0.764	$7 \cdot 43$	$0.07{ }^{\text {s }}$		18.27	
1.87	$0 \cdot 119$	0.843	$6 \cdot 73$	0.26	$0 \cdot 52$	18.84	18.00
$2 \cdot 05$	$0 \cdot 186$	0.940	$5 \cdot 94$	$0 \cdot 40$	$1 \cdot 17$	19.08	18.16
2.21	$0 \cdot 271$	1.098	$4 \cdot 71$	0.58	$2 \cdot 22$	$19 \cdot 34$	$18 \cdot 27$
$2 \cdot 36$	0.325	1.300	$3 \cdot 25$	$0 \cdot 70$	$3 \cdot 56$	19.58	18.40
$2 \cdot 54$	$0 \cdot 368$	1.549	$1 \cdot 54$	0.79	$5 \cdot 18$	19.96	18.51
$2 \cdot 69$	0.329	1.717	$0 \cdot 48$	0.71	6.32	$20 \cdot 42$	18.64
$2 \cdot 80$	0.246	1.800	$0 \cdot 11$	0.53	6.87		18.90
$3 \cdot 28$	0.065	1.875		$0 \cdot 14$	7.37		$19 \cdot 41$
$3 \cdot 76$	0.015	1.881		0.03	$7 \cdot 40$		-
4-22	0	$1 \cdot 897$			7.51		

Picric Acid.-In dilute sodium methoxide solution picric acid (ca. $10^{-4} \mathrm{M}$) exists entirely as the picrate anion $\mathrm{A}_{3}\left(\lambda_{\max .}=355 \mathrm{~m} \mu\right) .{ }^{5}$ At higher concentrations of methoxide two consecutive equilibria are apparent and give rise to complexes $B_{3}\left(\lambda_{\max } \sim 470 \mathrm{~m} \mu\right.$) and $\mathrm{C}_{3}\left(\lambda_{\max }=394 \mathrm{~m} \mu\right.$, $\varepsilon=25,300$) (Figure 3). Spectra of solutions containing only A_{3} and B_{3} showed an isosbestic point ($\varepsilon=10,000$) at $394 \mathrm{~m} \mu$ whereas for solutions containing only B_{3} and C_{3} isosbestic points at 408, 343, and $292 \mathrm{~m} \mu$ were present. Since A_{3} and C_{3} had negligible absorption at $480 \mathrm{~m} \mu$ measurement of optical densities at this wavelength and $394 \mathrm{~m} \mu$ (Table 3) enabled a complete analysis for $\left[\mathrm{A}_{3}\right],\left[\mathrm{B}_{3}\right]$, and $\left[\mathrm{C}_{3}\right]$ (Table 3) to be carried out by a similar method to that used for 2,4-dinitroanisole.

2,4,6-Trinitroanisole.-Conversion of 2,4,6-trinitroanisole into a $1: 1$ addition complex A_{4} ($\lambda_{\text {max. }}=410,480 \mathrm{~m} \mu$) is complete in $0 \cdot 1 \mathrm{~m}$-sodium methoxide solutions. ${ }^{2 a}$ At higher methoxide
${ }^{5}$ N. A. Izmailov and E. L. Gurevich, Optics and Spectroscopy, 1961, 10, 9.
concentrations the $410 \mathrm{~m} \mu$ absorption becomes weaker and the $480 \mathrm{~m} \mu$ absorption stronger indicating further equilibrium to a complex $\mathrm{B}_{4}\left(\lambda_{\max }=480 \mathrm{~m} \mu\right)$, a series of spectra for the range Im $<[\mathrm{NaOMe}]<2 \cdot 4 \mathrm{M}$ showing an isosbestic point $(\varepsilon=12,700)$ at $431 \mathrm{~m} \mu$. Spectra relating to these equilibria have been recorded elsewhere. ${ }^{2 a}$ Above $[\mathrm{NaOMe}]=3 \mathrm{~m}$ the intensity of the

Figure 3. Absorption spectra of picric acid $\left(7.51 \times 10^{-5} \mathrm{M}\right)$ in methanolic sodium methoxide
[NaOMe]: 1, $0 ; 2,2 \cdot 36 \mathrm{~m} ; 3,4 \cdot 22 \mathrm{M}$
$480 \mathrm{~m} \mu$ absorption decreases until in $4 \cdot 4 \mathrm{~m}$-sodium methoxide the $2,4,6$-trinitroanisole is mostly converted into a colourless complex $\mathrm{C}_{4}\left(\lambda_{\max }=299 \mathrm{~m} \mu\right)$.

By using a similar expression to equation (3), concentrations of C_{4} in reaction solutions were calculated from optical-density measurements at $431 \mathrm{~m} \mu$ (Table 4). Measurements at $410 \mathrm{~m} \mu$

Table 4
Summary of data for 2,4,6-trinitroanisole

$\underset{(\mathrm{M})}{[\mathrm{NaOMe}}$	$\begin{gathered} D_{0} \\ (431 \mathrm{~m} \mu) \end{gathered}$	$\begin{gathered} D_{0} \\ (410 \mathrm{~m} \mu) \end{gathered}$	$\begin{gathered} 10^{5}\left[\mathrm{~A}_{4}\right] \\ (\mathrm{M}) \end{gathered}$	$\begin{gathered} 10^{5}\left[\mathrm{~B}_{4}\right] \\ (\mathrm{M}) \end{gathered}$	$\begin{gathered} 10^{5}\left[\mathrm{C}_{4}\right] \\ (\mathrm{M}) \end{gathered}$	$\begin{gathered} \text { Acidity } \\ \theta_{7} \end{gathered}$	$\begin{gathered} \text { tions } \\ \theta_{8} \end{gathered}$
0.94	0.442	0.858	$3 \cdot 43$	$0 \cdot 020$		17.58	
$1 \cdot 24$	0.441	0.851	$3 \cdot 39$	$0 \cdot 06_{1}$		18.06	
$1 \cdot 42$	$0 \cdot 440$	0.841	$3 \cdot 32$	$0 \cdot 12{ }^{2}$		18.38	
$1 \cdot 79$	0.439	0.803	$3 \cdot 09$	$0 \cdot 36$		18.87	
1-89	0.441	0.785	3.00	$0 \cdot 45$		18.98	
$2 \cdot 21$	$0 \cdot 440$	$0 \cdot 730$	$2 \cdot 68$	$0 \cdot 77$		19.27	
$2 \cdot 34$	0.438	$0 \cdot 667$	$2 \cdot 29$	$1 \cdot 16$		19.51	
$2 \cdot 82$	$0 \cdot 417$	$0 \cdot 432$	1.00	$2 \cdot 27$	0.18	$20 \cdot 17$	18.70
$3 \cdot 03$	0.380	$0 \cdot 324$	0.51	$2 \cdot 47$	$0 \cdot 47$	20.50	19.08
$3 \cdot 29$	$0 \cdot 341$	$0 \cdot 231$	0.24	$2 \cdot 48$	0.77	$20 \cdot 82$	$19 \cdot 29$
$3 \cdot 40$	$0 \cdot 301$	$0 \cdot 199$	0.07	$2 \cdot 29$	1.09		$19 \cdot 48$
$3 \cdot 73$	$0 \cdot 208$	$0 \cdot 131$	0.01	$1 \cdot 62$	$1 \cdot 82$		19.85
$3 \cdot 97$	$0 \cdot 146$	0.091		$1 \cdot 15$	$2 \cdot 30$		$20 \cdot 10$
$4 \cdot 10$	$0 \cdot 120$	0.075		0.94	$2 \cdot 51$		$20 \cdot 22$
$4 \cdot 35$	0.080	0.051		$0 \cdot 63$	$2 \cdot 82$		20.47

were used to evaluate $\left[\mathrm{A}_{4}\right]$ and $\left[\mathrm{B}_{4}\right]$ as follows. From the material balance $\left[\mathrm{A}_{4}\right]+\left[\mathrm{B}_{4}\right](=$ $[\mathrm{TNA}]_{\text {stoich }}-\left[\mathrm{C}_{4}\right]$) , was calculated and divided into the optical densities at $410 \mathrm{~m} \mu$ to give a series of numbers which tended to a constant (7970) at high sodium methoxide concentrations. As $\varepsilon_{D_{4}}(410)$ is negligible this must be the extinction coefficient of B_{4} at $410 \mathrm{~m} \mu$, since at high concentrations $\left[\mathrm{A}_{4}\right]$ will be negligible and therefore

$$
D_{0} /\left(\left[\mathrm{A}_{4}\right]+\left[\mathrm{B}_{4}\right]\right)=D_{0} /\left[\mathrm{B}_{4}\right]=\varepsilon_{\mathrm{B}_{4}}
$$

Hence knowledge of the extinction coefficient of A_{4} from the spectrum of 2,4,6-trinitroanisole in $0 \cdot 1 \mathrm{~m}$-sodium methoxide and combination of the material balance with the equation (relating to $410 \mathrm{~m} \mu$)

$$
\varepsilon_{A_{6}}\left[\mathrm{~A}_{4}\right]+\varepsilon_{\mathbf{B}_{6}}\left[\mathrm{~B}_{4}\right]=D_{0}
$$

permitted the evaluation of $\left[A_{4}\right]$ and $\left[B_{4}\right]$ (Table 4).

Discussion

Measurement of the ionisation ratios ($\left[\mathrm{S}^{-}\right] /[\mathrm{SH}]$) for an equilibrium

$$
\mathrm{SH}+\mathrm{OMe}^{-} \rightleftharpoons \mathrm{S}^{-}+n \mathrm{MeOH}
$$

in methanolic sodium methoxide solutions allows definition of the H_{-}acidity function ${ }^{6}$ according to the equations

$$
\begin{align*}
H_{-} & =\mathrm{p} K_{\mathrm{SH}}+\log _{10}\left(\left[\mathrm{~S}^{-}\right] /[\mathrm{SH}]\right) \tag{4}\\
& =\mathrm{p} K_{\mathrm{MeOH}}+\log _{10}\left[\mathrm{OMe}^{-}\right]-n \log _{10} a_{\mathrm{MeOH}}+\log _{10}\left(f_{\mathrm{OMe}^{-}}-f_{\mathrm{SH}} / f_{\mathrm{S}^{-}}\right) \tag{5}
\end{align*}
$$

Similarly the definition of the J_{-}acidity function ${ }^{33,4}$ according to

$$
\begin{align*}
J_{-} & =\mathrm{p} K+\log _{10}\left(\left[\mathrm{SH} \cdot \mathrm{OMe}^{-}\right] /[\mathrm{SH}]\right) \tag{6}\\
& =\mathrm{p} K_{\mathrm{MeOH}}+\log _{10}\left[\mathrm{OMe}^{-}\right]-m \log _{10} a_{\mathrm{MeOH}}+\log _{10}\left(f_{\mathrm{OMe}}-f_{\mathrm{SH}} / f_{\mathrm{SH} \cdot \mathrm{OMe}^{-}}\right) \tag{7}
\end{align*}
$$

where K is the equilibrium constant for

$$
\mathrm{SH}+\mathrm{MeOH} \rightleftharpoons \mathrm{SH} \cdot \mathrm{OMe}^{-}+\mathrm{H}^{+},
$$

follows from measurement of ionisation ratios $\left[\mathrm{SH} \cdot \mathrm{OMe}^{-}\right] /[\mathrm{SH}]$ for the reversible equilibrium

$$
\mathrm{SH}+\mathrm{OMe}^{-} \rightleftharpoons \mathrm{SH} \cdot \mathrm{OMe}^{-}+m \mathrm{MeOH}
$$

Of the eight sets of ionisation ratios ($\left[\mathrm{A}_{1}\right] /\left[\mathrm{D}_{1}\right],\left[\mathrm{B}_{1}\right] /\left[\mathrm{A}_{1}\right],\left[\mathrm{A}_{2}\right] /\left[\mathrm{D}_{2}\right]$, etc.) measured in the present work two refer to equilibria in which SH is a neutral substrate, four describe equilibria involving SH^{-}, and two involving SH^{2-}.

The variation of the ionisation ratios with sodium methoxide concentration suggests the equilibria as falling into two groups. The constant $\mathrm{p} K$ in the acidity function equation was evaluated for one equilibrium in each group from the intercept at $[\mathrm{NaOMe}]=0$ of a plot of $\left\{\log _{10}\right.$ (ratio) $\left.-\log _{10}[\mathrm{NaOMe}]\right\}$ against $[\mathrm{NaOMe}] .{ }^{7}$ Values of pK (Table 5) for the other equilibria were deduced by the usual stepwise procedure. ${ }^{8}$ An acidity function pertaining to each equilibrium was thence deduced (Tables $1-4$). The acidity functions

Table 5
Summary of pK values

Relevant ionisation ratios	[A]/[D]	[B]/[A]	$[\mathrm{C}] /[\mathrm{B}]$
2,4-Dinitroaniline	18.15	21.06	
2,4-Dinitroanisole	$20 \cdot 24$	21.66	
Picric acid		20.25	$17 \cdot 69$
2,4,6-Trinitroanisole		19.81	$19 \cdot 80$

are compared in Figure 4. The lower group of three parallel More O'Ferrall and Ridd's H_{-}scale whereas the upper five change more rapidly with increasing stoicheiometric sodium methoxide concentration but agree excellently with each other. In Figure 5 the acidity function thus defined is compared in relation to the ideal function ($\mathrm{p} K_{\mathrm{MeOH}}+$ $\log _{10}[\mathrm{NaOMe}]$) with the H_{-}scales defined by the ionisation of amines ${ }^{7}$ and phenols ${ }^{1}$ in methanolic sodium methoxide.

Only two of the equilibria studied involve interactions between a neutral substrate SH and sodium methoxide. 2,4-Dinitroaniline probably ionises by loss of an amino-proton and on this assumption has been used for measurement of the H_{-}acidity function. ${ }^{7,9}$ However, the further interaction of the amine anion with sodium methoxide above $[\mathrm{NaOMe}]=2 \mathrm{~m}$ leads to small errors in any acidity function deduced on the assumption

[^0]that only undissociated amine and amine anion RNH^{-}exist in the solution. 2,4-Dinitroanisole on the other hand probably forms a Meisenheimer ${ }^{10}$ type complex by addition of methoxide ions to the neutral molecule. The acidity function deduced from this equilibrium would therefore be consistent with a J_{-}acidity function as defined by equation 6 . The large deviation between J_{-}and H_{-}in these solutions (Figure 5) may arise from

Figure 4. Acidity functions from Tables 1 - 4 as a function of sodium methoxide concentration. Functions are staggered by 0.5 unit amounts for clarity

$$
1, \theta_{1} ; 2, \theta_{4} ; 3, \theta_{2} ; 4, \theta_{5} ; 5, \theta_{7} ; 6, \theta_{8}
$$

$7, \theta_{6} ; 8, \theta_{3}$
Lower three lines represent More O'Ferrall and Ridd's H_{-}scale whereas upper five are linear and staggered by 0.5 unit amounts

Figure 5. Comparison of acidity functions for methanolic sodium methoxide solutions
1, $J_{-}=J_{2^{-}}$(present work); 2, H_{-}(substituted amines); 3, H_{-}(substituted phenols); 4, $\mathrm{p} K_{\text {MeOH }}+\log _{10}[\mathrm{NaOMe}]$ (ideal expression)

differences in the solvation factors n and m (equations 5 and 7), a similar explanation having been proposed to explain deviations between J_{0} and H_{0} in aqueous acid solutions. ${ }^{11}$

The four reactions which involve interaction between a singly negative charged substrate SH^{-}and methoxide are all consistent with the J_{-}function above (Figure 4). It being assumed that all four relate to addition of methoxide ions to SH^{-}according to

$$
\mathrm{SH}^{-}+\mathrm{OMe}^{-} \rightleftharpoons \mathrm{SH} \cdot \mathrm{OMe}^{2-}+q \mathrm{MeOH}
$$

the relevant acidity function to be considered is J_{2-} where

$$
\begin{align*}
J_{2^{-}} & =\mathrm{p} K^{\prime}+\log _{10}\left(\left[\mathrm{SH} \cdot \mathrm{OMe}^{2-}\right] /\left[\mathrm{SH}^{-}\right]\right) \tag{8}\\
& =\mathrm{p} K_{\mathrm{MeOH}}+\log _{10}\left[\mathrm{OMe}^{-}\right]-q \log _{10} a_{\mathrm{MeOH}}+\log _{10}\left(f_{\mathrm{OMe}^{-}}-f_{\mathrm{SH}}-\mid f_{\mathrm{SH} \cdot \mathrm{OMe}}{ }^{2-}\right) \tag{9}
\end{align*}
$$

and K^{\prime} is the equilibrium constant for

$$
\mathrm{SH}^{-}+\mathrm{MeOH} \rightleftharpoons \mathrm{SH} \cdot \mathrm{OMe}^{2-}+\mathrm{H}^{+} .
$$

${ }^{10}$ J. Meisenheimer, Annalen, 1902, 323, 205.
${ }_{11}$ R. W. Taft, jun., J. Amer. Chem. Soc., 1960, 82, 2965.

The agreement between the $J_{2^{-}}$function relevant to these equilibria and the J_{-}function for the 2,4-dinitroanisole + methoxide reaction suggests by comparison of equations 7 and 9 that in these cases the solvation factors m and q are identical. If this were a general result for any organic substrate adding to methoxide then the J_{-}function defined could provide a useful criterion of mechanism in concentrated sodium methoxide solutions particularly in view of its large deviation from H_{-}. However, a study of the ionisation of hindered phenols in sodium methoxide solutions suggests that the H_{-}function is not independent of the class of indicator used to measure it, ${ }^{1}$ and if this is so the use of acidity functions as a criterion of mechanism will be limited.

The two remaining equilibria which involve interaction between SH^{2-} and sodium methoxide provide acidity functions which closely agree with the H_{-}scale (Figure 4). However, whether these reactions relate to methoxide addition to SH^{2-} (appropriate acidity function $J_{3^{-}}$) or proton abstraction from SH^{2-} (appropriate function $H_{3}-$) must be in doubt.

Chemistry Department, The University, Nottingham. [Received, September 9th, 1964.]

[^0]: ${ }^{6}$ M. A. Paul and F. A. Long, Chem. Rev., 1957, 57, 1.
 7 R. A. More O'Ferrall and J. H. Ridd, $J ., 1963,5030$.
 ${ }^{8}$ L. P. Hammett and A. J. Deyrup, J. Amer. Chem. Soc., 1932, 54, 2721.
 ${ }^{9}$ R. Schaal and G. Lambert, J. Chim. phys., 1962, 1164.

